P. E. Tomaszewski, N. Miniajluk, M. Zawadzki, J. Trawczyński
Phase Transistions
The nanocrystalline LaMnO3+δ perovskite was synthesized by the microwave-assisted glycothermal method and calcined at several temperatures up to 1500°C. The prepared samples were examined by the X-ray powder diffraction with the aim to show that LaMnO3+δ exhibits the size-induced structural phase transitions. The as-received nanocrystals of LaMnO3+δ are of tetragonal, pseudo-cubic symmetry not known for bulk material. The samples calcined at temperatures 750–1100°C have trigonal symmetry known from the high-temperature phase of LaMnO3 single crystal. The samples calcined from 1200°C to 1500°C have two phases: trigonal and orthorhombic. Thus, the observed phase sequence is inverted with respect to that of the bulk material, which is the characteristic of the size-induced mechanism of phase transitions in the nanocrystals. The critical crystallite sizes for both structural transitions were evaluated as 20 and 100 nm.